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Motivating Example

Entomological survey on resettled (At risk) and non-resettled (control) villages (Degafa et al, 2015)

Female anopheline mosquitoes resting inside human habitations collected monthly from 20 selected
houses per village using pyrethrum spray catches

Six longitudinal measurements per household

Goal: Quantify the effect of ecological transformation and plan for intervention

Standard statistical practice

Use data-driven search to find best model
M∗

Check model fit
Use M∗ to estimate effect size, make
predictions
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Motivating Example

Generalized liner Mixed Model

Yij |bi ∼ Poisson(λij)
ηij = log(λij) = ξ1 + ξ2xi + (ξ3 + ξ4xi)tij + bi

Let’s restrict attention to linear predictor specification assuming
that other structural properties of the model is known

Set of candidate models

M1 : ηij = ξ1 + ξ3tij + bi

M2 : ηij =
ξ1 + ξ2xi + ξ3tij + bi

M3 : ηij =
ξ1 + (ξ3 + ξ4xi)tij + bi

M4 : ηij =
ξ1+ξ2xi+(ξ3+ξ4xi)tij+bi

Unsatisfactory approach

What do you do about competing
model M∗∗?
Too risky to base all of your
inferences on M∗ alone
Inference should take in to account
uncertainty in the model selection
process

Solution: Model Averaging
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Model averaging: Notation

Consider K models: M = {Mk, k = 1, 2, ...,K}
Associated with model k are (a vector of) parameters θk

∆ is quantity of interest

Effect size
Future observation

D is data

P (θk|Mk) is prior density of θk under Mk

P (D|θk,Mk) is likelihood of data

P (Mk) is prior probability that Mk is the true model
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Model averaging: Including Model Selection
Uncertainty in Estimator

Model averaged posterior distribution of ∆ given data is

P (∆|D) =

K∑
k=1

P (∆|D,Mk)P (Mk|D)

Let ∆̂k = E[∆|D,Mk]
The mean and variance of ∆ is

Mean:

E[∆|D] =

K∑
k=1

∆̂kP (Mk|D)

Variance:

V ar[∆|D] =
K∑

k=1

(V ar[∆|D,Mk] + ∆̂2
k)P (Mk|D)− E[∆|D]2

This distribution takes into account the model uncertainty
i.e. that we do not know the correct model Mk
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Model averaging: Posterior Model Probability

The key ingredient of the model averaged estimates are the
posterior model probability

The Posterior probability for model Mk ∈M given data is

P (Mk|D) =
P (D|Mk)P (Mk)∑K
s=1 P (D|Ms)P (Ms)

where

P (D|Mk) =

∫
P (D|θk,Mk)P (θk|Mk)dθk
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Model Averaging: Complication

Good news: Robust Inference

Previous research shows that averaging over all models provides
better predictive ability than using single model

Difficulties in implementation

How do you specify prior distribution on Mk and θk?
How can we compute the marginal likelihoods P (D|Mk) in an
economical manner?
M can be enormous; what search strategies can be implemented to
quickly calculate or approximate P (D|Mk)?
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Model Averaging Strategies

We will look at two methods

Frequentist Model Averaging

Based on calculating model choice criteria (eg., AIC and
BIC)(Burnham and Anderson, 2002; Lin et. al., 2012)

Bayesian Model Averaging (Our main focus)

Lots of possible approaches (we will look at one)

Bayesian variable selection strategies (BVS)(Kuo and Mallick, 1998;
Kasim et al, 2012, Otava, 2014 )
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Frequentist model averaging

Using the BIC and AIC approximation

An alternative expression of the posterior probability is

P (Mk|D) =
BFkjP (Mk)∑K
s=1BFsjP (Ms)

where BFsj = P (D|Ms)/P (D|Mj)

Since −2logBFsj ≈ BICs −BICj)

P (Mk|D) =
exp (−1

2∆BICk)∑K
s=1 exp (−1

2∆BICs)

with ∆BICs = BICs −BICmin and assuming P (Mk) = 1/K for
all k

Here, one can also use AIC .
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Frequentist model averaging

Steps

Develop candidate models based on biological knowledge
Fit all candidate models and obtain MLE of parameters, AIC, and
BIC of the alternate models
Evaluate strength of evidence for alternate models using
approximation given above
Average MLE of parameters obtained from alternate models by
their corresponding posterior model probability

Disadvantage

Need to fit all candidate models separately
Exploration of all K models is not possible for K large

Solution: Bayesian Variable selection
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Bayesian Variable selection (BVS): How to Perform?

Different models arise from the inclusion/exclusion of ξ2 and ξ4

Substitute M by δ = (δ1, δ2), a binary indictor variable
determining weather or not ξ2 and/or ξ4 included in the model
where

δ =


(0, 0) if ξ2&ξ4not included,

(1, 0) if ξ2is included,

(0, 1) if ξ4is included,

(1, 1) if ξ2&ξ4is included.

Use binary system and calculate M using the equation

M = 1 +

L∑
l=1

δl2
l−1, l = 1, ..., L(L = 2here)
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BVS Model Formulation

Likelihood
Yij |bi ∼ Poisson(λij)

log(λij) = ξ1 + δ1ξ2xi + (ξ3 + δ2ξ4xi)tij + bi

Prior specification

ξk ∼ N(0, τ−1
ξh

), h = 1, ..., 4

τξh ∼ Γ(1, 1),

δl ∼ B(pl), l = 1, 2

pl ∼ U(0, 1),

bi ∼ N(0, τ−1
b ),

τb ∼ Γ(10−3, 10−3)

Set of candidate models

One-to-one relation between M
and δ

Indictor Model Liner predictor

δ 1+ log(λij))∑L
l δl2

L−1

(0,0) 1 ξ1 + ξ3tij + bi
(1,0) 2 ξ1 + ξ2xi + ξ3tij + bi
(0,1) 3 ξ1 + (ξ3 + ξ4xi)tij + bi
(1,1) 4 ξ1 + ξ2xi

+(ξ3 + ξ4xi)tij + bi

Belay Birlie ( Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium & Department of Statistics, Jimma University, Jimma, Ethiopia Ethiopian Statistical Association Conference Addis Ababa, Ethiopia )ESA 2016 May 20-22, 2016 16 / 23



BVS Model Formulation

Likelihood
Yij |bi ∼ Poisson(λij)

log(λij) = ξ1 + δ1ξ2xi + (ξ3 + δ2ξ4xi)tij + bi

Prior specification

ξk ∼ N(0, τ−1
ξh

), h = 1, ..., 4

τξh ∼ Γ(1, 1),

δl ∼ B(pl), l = 1, 2

pl ∼ U(0, 1),

bi ∼ N(0, τ−1
b ),

τb ∼ Γ(10−3, 10−3)

Set of candidate models

One-to-one relation between M
and δ

Indictor Model Liner predictor

δ 1+ log(λij))∑L
l δl2

L−1

(0,0) 1 ξ1 + ξ3tij + bi
(1,0) 2 ξ1 + ξ2xi + ξ3tij + bi
(0,1) 3 ξ1 + (ξ3 + ξ4xi)tij + bi
(1,1) 4 ξ1 + ξ2xi

+(ξ3 + ξ4xi)tij + bi

Belay Birlie ( Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium & Department of Statistics, Jimma University, Jimma, Ethiopia Ethiopian Statistical Association Conference Addis Ababa, Ethiopia )ESA 2016 May 20-22, 2016 16 / 23



BVS: Some Detail

The BVS model provides a simultaneous framework for estimation
and model selection

Denote ϑ1 = δ1ξ2 and ϑ2 = δ2ξ4 and let θ = (ξ1, ϑ1, ξ3, ϑ2, σ
2
b )

Generate a sample (M (b), θ(b), δ
(b)
l , b = 1, ..., B) using an MCMC

algorithm
Estimate posterior inclusion probabilities by

ˆ̄δl =
1

B

B∑
b=1

I(δ
(b)
l = 1), l = 1, 2

Estimate posterior model probability by

P̂ (Mk|D) =
1

B

B∑
b=1

I(M (b) = Mk), k = 1, ...,M

In each iteration b, only one model M is considered, so the estimate
of θ is

ˆ̄θ =
1

B

B∑
b=1

nMk
θ̂Mk

=

K∑
k=1

P̂ (Mk|D)θ̂Mk
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Application

We compute posterior model Probability using BVS and also
approximate using AIC and BIC for each model

We fit the full model, the best model and contrast their estimate
with model averaged estimates
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Results: Posterior Model and Inclusion Probability

All approaches reject the null hypothesis H0 : ξ2 = ξ4 = 0

Clearly, model 2 is indicated as the best by all approaches

This model says that the two groups have a different intercept but
identical slope
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Results: Parameter Estimates

Par Full BM MA-BIC MA-AIC BVS
mean SD mean SD mean SD mean SD mean SD

ξ1 0.690 0.259 0.745 0.229 0.799 0.219 0.767 0.232 0.761 0.242
ξ2 0.865 0.340 0.786 0.295 0.630 0.238 0.728 0.277 0.661 0.359
ξ3 -0.245 0.051 -0.265 0.028 -0.259 0.031 -0.260 0.034 -0.262 0.030
ξ4 -0.028 0.061 -0.002 0.008 -0.006 0.018 -0.001 0.016
σb 0.845 0.121 0.846 0.121 0.846 0.120 0.851 0.121 0.905 0.137
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Conclusion

Post model selection parameter estimation is too risk and may
lead to bias

The use of model averaging is advocated in situations where,

The underlying goal of model selection is parameter estimation or
prediction
No single model is overwhelmingly supported by the data

The use of frequentist model averaging is limited to situations
where we have small number of candidate models

The BVS method performs simultaneous analyses of all the
possible models and provides model averaged parameter estimates
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Thank You
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