Bayesian Model Averaging in Longitudinal Studies using Bayesian Variable Selection Methods

Belay Birlie

Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium

Department of Statistics, Jimma University, Jimma, Ethiopia

Ethiopian Statistical Association Conference
Addis Ababa, Ethiopia

May 20-22, 2016

Research Teams

- Belay Birlie (Hasselt University and Jimma University)
- Martin Otava (Janssen Pharmaceutical)
- Teshome Degafa (Jimma University)
- Delnesaw Yehwalaw (Jimma University)
- Ziv Shkedy (Hasselt University)

Outline

(1) Introduction

- Model averaging
(2) Model Averaging Strategies
- Frequentist model averaging
- Bayesian Variable selection

(3) Conclusion

Outline

(1) Introduction

- Model averaging
(2) Model Averaging Strategies
- Frequentist model averaging
- Bayesian Variable selection
(3) Conclusion

Motivating Example

Entomological survey on resettled (At risk) and non-resettled (control) villages (Degafa et al, 2015)

- Female anopheline mosquitoes resting inside human habitations collected monthly from 20 selected houses per village using pyrethrum spray catches
- Six longitudinal measurements per household
- Goal: Quantify the effect of ecological transformation and plan for intervention

Motivating Example

Entomological survey on resettled (At risk) and non-resettled (control) villages (Degafa et al, 2015)

- Female anopheline mosquitoes resting inside human habitations collected monthly from 20 selected houses per village using pyrethrum spray catches
- Six longitudinal measurements per household
- Goal: Quantify the effect of ecological transformation and plan for intervention
- Standard statistical practice
- Use data-driven search to find best model M^{*}
- Check model fit
- Use M^{*} to estimate effect size, make predictions

Motivating Example

- Generalized liner Mixed Model

$$
\begin{gathered}
Y_{i j} \mid b_{i} \sim \operatorname{Poisson}\left(\lambda_{i j}\right) \\
\eta_{i j}=\log \left(\lambda_{i j}\right)=\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}
\end{gathered}
$$

- Let's restrict attention to linear predictor specification assuming that other structural properties of the model is known

Motivating Example

- Generalized liner Mixed Model

$$
\begin{gathered}
Y_{i j} \mid b_{i} \sim \operatorname{Poisson}\left(\lambda_{i j}\right) \\
\eta_{i j}=\log \left(\lambda_{i j}\right)=\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}
\end{gathered}
$$

- Let's restrict attention to linear predictor specification assuming that other structural properties of the model is known

Set of candidate models

- $M_{1}: \eta_{i j}=\xi_{1}+\xi_{3} t_{i j}+b_{i}$
- $M_{2}: \eta_{i j}=$ $\xi_{1}+\xi_{2} x_{i}+\xi_{3} t_{i j}+b_{i}$
- $M_{3}: \eta_{i j}=$
$\xi_{1}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$
- $M_{4}: \eta_{i j}=$ $\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$

Motivating Example

- Generalized liner Mixed Model

$$
\begin{gathered}
Y_{i j} \mid b_{i} \sim \operatorname{Poisson}\left(\lambda_{i j}\right) \\
\eta_{i j}=\log \left(\lambda_{i j}\right)=\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}
\end{gathered}
$$

- Let's restrict attention to linear predictor specification assuming that other structural properties of the model is known

Set of candidate models

- $M_{1}: \eta_{i j}=\xi_{1}+\xi_{3} t_{i j}+b_{i}$
- $M_{2}: \eta_{i j}=$ $\xi_{1}+\xi_{2} x_{i}+\xi_{3} t_{i j}+b_{i}$
- $M_{3}: \eta_{i j}=$
$\xi_{1}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$
- $M_{4}: \eta_{i j}=$ $\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$

Motivating Example

- Generalized liner Mixed Model

$$
\begin{gathered}
Y_{i j} \mid b_{i} \sim \text { Poisson }\left(\lambda_{i j}\right) \\
\eta_{i j}=\log \left(\lambda_{i j}\right)=\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}
\end{gathered}
$$

- Let's restrict attention to linear predictor specification assuming that other structural properties of the model is known

Set of candidate models

- $M_{1}: \eta_{i j}=\xi_{1}+\xi_{3} t_{i j}+b_{i}$
- $M_{2}: \eta_{i j}=$ $\xi_{1}+\xi_{2} x_{i}+\xi_{3} t_{i j}+b_{i}$
- $M_{3}: \eta_{i j}=$ $\xi_{1}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$
- $M_{4}: \eta_{i j}=$ $\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$
- Unsatisfactory approach
- What do you do about competing model $M^{* *}$?
- Too risky to base all of your inferences on M^{*} alone
- Inference should take in to account uncertainty in the model selection process

Motivating Example

- Generalized liner Mixed Model

$$
\begin{gathered}
Y_{i j} \mid b_{i} \sim \text { Poisson }\left(\lambda_{i j}\right) \\
\eta_{i j}=\log \left(\lambda_{i j}\right)=\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}
\end{gathered}
$$

- Let's restrict attention to linear predictor specification assuming that other structural properties of the model is known

Set of candidate models

- $M_{1}: \eta_{i j}=\xi_{1}+\xi_{3} t_{i j}+b_{i}$
- $M_{2}: \eta_{i j}=$ $\xi_{1}+\xi_{2} x_{i}+\xi_{3} t_{i j}+b_{i}$
- $M_{3}: \eta_{i j}=$ $\xi_{1}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$
- $M_{4}: \eta_{i j}=$ $\xi_{1}+\xi_{2} x_{i}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$
- Unsatisfactory approach
- What do you do about competing model $M^{* *}$?
- Too risky to base all of your inferences on M^{*} alone
- Inference should take in to account uncertainty in the model selection process
- Solution: Model Averaging

Model averaging: Notation

- Consider K models: $\mathcal{M}=\left\{M_{k}, k=1,2, \ldots, K\right\}$
- Associated with model k are (a vector of) parameters θ_{k}
- Δ is quantity of interest
- Effect size
- Future observation
- D is data
- $P\left(\theta_{k} \mid M_{k}\right)$ is prior density of θ_{k} under M_{k}
- $P\left(D \mid \theta_{k}, M_{k}\right)$ is likelihood of data
- $P\left(M_{k}\right)$ is prior probability that M_{k} is the true model

Model averaging: Including Model Selection Uncertainty in Estimator

- Model averaged posterior distribution of Δ given data is

$$
P(\Delta \mid D)=\sum_{k=1}^{K} P\left(\Delta \mid D, M_{k}\right) P\left(M_{k} \mid D\right)
$$

Model averaging: Including Model Selection Uncertainty in Estimator

- Model averaged posterior distribution of Δ given data is

$$
P(\Delta \mid D)=\sum_{k=1}^{K} P\left(\Delta \mid D, M_{k}\right) P\left(M_{k} \mid D\right)
$$

- Let $\hat{\Delta}_{k}=E\left[\Delta \mid D, M_{k}\right]$

Model averaging: Including Model Selection Uncertainty in Estimator

- Model averaged posterior distribution of Δ given data is

$$
P(\Delta \mid D)=\sum_{k=1}^{K} P\left(\Delta \mid D, M_{k}\right) P\left(M_{k} \mid D\right)
$$

- Let $\hat{\Delta}_{k}=E\left[\Delta \mid D, M_{k}\right]$
- The mean and variance of Δ is
- Mean:

$$
E[\Delta \mid D]=\sum_{k=1}^{K} \hat{\Delta}_{k} P\left(M_{k} \mid D\right)
$$

- Variance:

$$
\operatorname{Var}[\Delta \mid D]=\sum_{k=1}^{K}\left(\operatorname{Var}\left[\Delta \mid D, M_{k}\right]+\hat{\Delta}_{k}^{2}\right) P\left(M_{k} \mid D\right)-E[\Delta \mid D]^{2}
$$

- This distribution takes into account the model uncertainty
- i.e. that we do not know the correct model M_{k}

Model averaging: Posterior Model Probability

- The key ingredient of the model averaged estimates are the posterior model probability

Model averaging: Posterior Model Probability

- The key ingredient of the model averaged estimates are the posterior model probability
- The Posterior probability for model $M_{k} \in \mathcal{M}$ given data is

$$
P\left(M_{k} \mid D\right)=\frac{P\left(D \mid M_{k}\right) P\left(M_{k}\right)}{\sum_{s=1}^{K} P\left(D \mid M_{s}\right) P\left(M_{s}\right)}
$$

where

$$
P\left(D \mid M_{k}\right)=\int P\left(D \mid \theta_{k}, M_{k}\right) P\left(\theta_{k} \mid M_{k}\right) d \theta_{k}
$$

Model Averaging: Complication

- Good news: Robust Inference
- Previous research shows that averaging over all models provides better predictive ability than using single model

Model Averaging: Complication

- Good news: Robust Inference
- Previous research shows that averaging over all models provides better predictive ability than using single model
- Difficulties in implementation
- How do you specify prior distribution on M_{k} and θ_{k} ?
- How can we compute the marginal likelihoods $P\left(D \mid M_{k}\right)$ in an economical manner?
- M can be enormous; what search strategies can be implemented to quickly calculate or approximate $P\left(D \mid M_{k}\right)$?

Outline

(1) Introduction

- Model averaging
(2) Model Averaging Strategies
- Frequentist model averaging
- Bayesian Variable selection
(3) Conclusion

Model Averaging Strategies

- We will look at two methods
- Frequentist Model Averaging
- Based on calculating model choice criteria (eg., AIC and BIC)(Burnham and Anderson, 2002; Lin et. al., 2012)

Model Averaging Strategies

- We will look at two methods
- Frequentist Model Averaging
- Based on calculating model choice criteria (eg., AIC and BIC)(Burnham and Anderson, 2002; Lin et. al., 2012)
- Bayesian Model Averaging (Our main focus)
- Lots of possible approaches (we will look at one)
- Bayesian variable selection strategies (BVS)(Kuo and Mallick, 1998; Kasim et al, 2012, Otava, 2014)

Frequentist model averaging

- Using the BIC and AIC approximation
- An alternative expression of the posterior probability is

$$
P\left(M_{k} \mid D\right)=\frac{B F_{k j} P\left(M_{k}\right)}{\sum_{s=1}^{K} B F_{s j} P\left(M_{s}\right)}
$$

where $B F_{s j}=P\left(D \mid M_{s}\right) / P\left(D \mid M_{j}\right)$

Frequentist model averaging

- Using the BIC and AIC approximation
- An alternative expression of the posterior probability is

$$
P\left(M_{k} \mid D\right)=\frac{B F_{k j} P\left(M_{k}\right)}{\sum_{s=1}^{K} B F_{s j} P\left(M_{s}\right)}
$$

where $B F_{s j}=P\left(D \mid M_{s}\right) / P\left(D \mid M_{j}\right)$

- Since $\left.-2 \log B F_{s j} \approx B I C_{s}-B I C_{j}\right)$

$$
P\left(M_{k} \mid D\right)=\frac{\exp \left(-\frac{1}{2} \Delta B I C_{k}\right)}{\sum_{s=1}^{K} \exp \left(-\frac{1}{2} \Delta B I C_{s}\right)}
$$

with $\Delta B I C_{s}=B I C_{s}-B I C_{\min }$ and assuming $P\left(M_{k}\right)=1 / K$ for all k

Frequentist model averaging

- Using the BIC and AIC approximation
- An alternative expression of the posterior probability is

$$
P\left(M_{k} \mid D\right)=\frac{B F_{k j} P\left(M_{k}\right)}{\sum_{s=1}^{K} B F_{s j} P\left(M_{s}\right)}
$$

where $B F_{s j}=P\left(D \mid M_{s}\right) / P\left(D \mid M_{j}\right)$

- Since $\left.-2 \log B F_{s j} \approx B I C_{s}-B I C_{j}\right)$

$$
P\left(M_{k} \mid D\right)=\frac{\exp \left(-\frac{1}{2} \Delta B I C_{k}\right)}{\sum_{s=1}^{K} \exp \left(-\frac{1}{2} \Delta B I C_{s}\right)}
$$

with $\Delta B I C_{s}=B I C_{s}-B I C_{\min }$ and assuming $P\left(M_{k}\right)=1 / K$ for all k

- Here, one can also use AIC .

Frequentist model averaging

- Steps

Frequentist model averaging

- Steps
- Develop candidate models based on biological knowledge
- Fit all candidate models and obtain MLE of parameters, AIC, and BIC of the alternate models
- Evaluate strength of evidence for alternate models using approximation given above
- Average MLE of parameters obtained from alternate models by their corresponding posterior model probability

Frequentist model averaging

- Steps
- Develop candidate models based on biological knowledge
- Fit all candidate models and obtain MLE of parameters, AIC, and BIC of the alternate models
- Evaluate strength of evidence for alternate models using approximation given above
- Average MLE of parameters obtained from alternate models by their corresponding posterior model probability
- Disadvantage
- Need to fit all candidate models separately
- Exploration of all K models is not possible for K large

Frequentist model averaging

- Steps
- Develop candidate models based on biological knowledge
- Fit all candidate models and obtain MLE of parameters, AIC, and BIC of the alternate models
- Evaluate strength of evidence for alternate models using approximation given above
- Average MLE of parameters obtained from alternate models by their corresponding posterior model probability
- Disadvantage
- Need to fit all candidate models separately
- Exploration of all K models is not possible for K large
- Solution: Bayesian Variable selection

Bayesian Variable selection (BVS): How to Perform?

- Different models arise from the inclusion/exclusion of ξ_{2} and ξ_{4}

Bayesian Variable selection (BVS): How to Perform?

- Different models arise from the inclusion/exclusion of ξ_{2} and ξ_{4}
- Substitute M by $\delta=\left(\delta_{1}, \delta_{2}\right)$, a binary indictor variable determining weather or not ξ_{2} and/or ξ_{4} included in the model where

$$
\delta= \begin{cases}(0,0) & \text { if } \xi_{2} \& \xi_{4} \text { not included } \\ (1,0) & \text { if } \xi_{2} \text { is included } \\ (0,1) & \text { if } \xi_{4} \text { is included } \\ (1,1) & \text { if } \xi_{2} \& \xi_{4} \text { is included }\end{cases}
$$

Bayesian Variable selection (BVS): How to Perform?

- Different models arise from the inclusion/exclusion of ξ_{2} and ξ_{4}
- Substitute M by $\delta=\left(\delta_{1}, \delta_{2}\right)$, a binary indictor variable determining weather or not ξ_{2} and/or ξ_{4} included in the model where

$$
\delta= \begin{cases}(0,0) & \text { if } \xi_{2} \& \xi_{4} \text { not included } \\ (1,0) & \text { if } \xi_{2} \text { is included } \\ (0,1) & \text { if } \xi_{4} \text { is included } \\ (1,1) & \text { if } \xi_{2} \& \xi_{4} \text { is included }\end{cases}
$$

- Use binary system and calculate M using the equation

$$
M=1+\sum_{l=1}^{L} \delta_{l} 2^{l-1}, \quad l=1, \ldots, L(L=2 h e r e)
$$

BVS Model Formulation

Likelihood

$$
\begin{gathered}
Y_{i j} \mid b_{i} \sim \operatorname{Poisson}\left(\lambda_{i j}\right) \\
\log \left(\lambda_{i j}\right)=\xi_{1}+\delta_{1} \xi_{2} x_{i}+\left(\xi_{3}+\delta_{2} \xi_{4} x_{i}\right) t_{i j}+b_{i}
\end{gathered}
$$

Prior specification

$$
\begin{aligned}
\xi_{k} & \sim N\left(0, \tau_{\xi_{h}}^{-1}\right), h=1, \ldots, 4 \\
\tau_{\xi_{h}} & \sim \Gamma(1,1), \\
\delta_{l} & \sim B\left(p_{l}\right), l=1,2 \\
p_{l} & \sim U(0,1), \\
b_{i} & \sim N\left(0, \tau_{b}^{-1}\right), \\
\tau_{b} & \sim \Gamma\left(10^{-3}, 10^{-3}\right)
\end{aligned}
$$

BVS Model Formulation

Likelihood

$$
\begin{gathered}
Y_{i j} \mid b_{i} \sim \operatorname{Poisson}\left(\lambda_{i j}\right) \\
\log \left(\lambda_{i j}\right)=\xi_{1}+\delta_{1} \xi_{2} x_{i}+\left(\xi_{3}+\delta_{2} \xi_{4} x_{i}\right) t_{i j}+b_{i}
\end{gathered}
$$

Prior specification

$$
\begin{aligned}
\xi_{k} & \sim N\left(0, \tau_{\xi_{h}}^{-1}\right), h=1, \ldots, 4 \\
\tau_{\xi_{h}} & \sim \Gamma(1,1), \\
\delta_{l} & \sim B\left(p_{l}\right), l=1,2 \\
p_{l} & \sim U(0,1), \\
b_{i} & \sim N\left(0, \tau_{b}^{-1}\right), \\
\tau_{b} & \sim \Gamma\left(10^{-3}, 10^{-3}\right)
\end{aligned}
$$

Set of candidate models

One-to-one relation between M and δ

Indictor	Model	Liner predictor
δ	$1+$	$\left.\log \left(\lambda_{i j}\right)\right)$
	$\sum_{l}^{L} \delta_{l} 2^{L-1}$	
$(0,0)$	1	$\xi_{1}+\xi_{3} t_{i j}+b_{i}$
$(1,0)$	2	$\xi_{1}+\xi_{2} x_{i}+\xi_{3} t_{i j}+b_{i}$
$(0,1)$	3	$\xi_{1}+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$
$(1,1)$	4	$\xi_{1}+\xi_{2} x_{i}$
		$+\left(\xi_{3}+\xi_{4} x_{i}\right) t_{i j}+b_{i}$

BVS: Some Detail

- The BVS model provides a simultaneous framework for estimation and model selection

BVS: Some Detail

- The BVS model provides a simultaneous framework for estimation and model selection
- Denote $\vartheta_{1}=\delta_{1} \xi_{2}$ and $\vartheta_{2}=\delta_{2} \xi_{4}$ and let $\theta=\left(\xi_{1}, \vartheta_{1}, \xi_{3}, \vartheta_{2}, \sigma_{b}^{2}\right)$
- Generate a sample $\left(M^{(b)}, \theta^{(b)}, \delta_{l}^{(b)}, b=1, \ldots, B\right)$ using an MCMC algorithm

BVS: Some Detail

- The BVS model provides a simultaneous framework for estimation and model selection
- Denote $\vartheta_{1}=\delta_{1} \xi_{2}$ and $\vartheta_{2}=\delta_{2} \xi_{4}$ and let $\theta=\left(\xi_{1}, \vartheta_{1}, \xi_{3}, \vartheta_{2}, \sigma_{b}^{2}\right)$
- Generate a sample $\left(M^{(b)}, \theta^{(b)}, \delta_{l}^{(b)}, b=1, \ldots, B\right)$ using an MCMC algorithm
- Estimate posterior inclusion probabilities by

$$
\hat{\hat{\delta}_{l}}=\frac{1}{B} \sum_{b=1}^{B} I\left(\delta_{l}^{(b)}=1\right), \quad l=1,2
$$

BVS: Some Detail

- The BVS model provides a simultaneous framework for estimation and model selection
- Denote $\vartheta_{1}=\delta_{1} \xi_{2}$ and $\vartheta_{2}=\delta_{2} \xi_{4}$ and let $\theta=\left(\xi_{1}, \vartheta_{1}, \xi_{3}, \vartheta_{2}, \sigma_{b}^{2}\right)$
- Generate a sample $\left(M^{(b)}, \theta^{(b)}, \delta_{l}^{(b)}, b=1, \ldots, B\right)$ using an MCMC algorithm
- Estimate posterior inclusion probabilities by

$$
\hat{\hat{\delta}_{l}}=\frac{1}{B} \sum_{b=1}^{B} I\left(\delta_{l}^{(b)}=1\right), \quad l=1,2
$$

- Estimate posterior model probability by

$$
\hat{P}\left(M_{k} \mid D\right)=\frac{1}{B} \sum_{b=1}^{B} I\left(M^{(b)}=M_{k}\right), \quad k=1, \ldots, M
$$

BVS: Some Detail

- The BVS model provides a simultaneous framework for estimation and model selection
- Denote $\vartheta_{1}=\delta_{1} \xi_{2}$ and $\vartheta_{2}=\delta_{2} \xi_{4}$ and let $\theta=\left(\xi_{1}, \vartheta_{1}, \xi_{3}, \vartheta_{2}, \sigma_{b}^{2}\right)$
- Generate a sample $\left(M^{(b)}, \theta^{(b)}, \delta_{l}^{(b)}, b=1, \ldots, B\right)$ using an MCMC algorithm
- Estimate posterior inclusion probabilities by

$$
\hat{\hat{\delta}_{l}}=\frac{1}{B} \sum_{b=1}^{B} I\left(\delta_{l}^{(b)}=1\right), \quad l=1,2
$$

- Estimate posterior model probability by

$$
\hat{P}\left(M_{k} \mid D\right)=\frac{1}{B} \sum_{b=1}^{B} I\left(M^{(b)}=M_{k}\right), \quad k=1, \ldots, M
$$

- In each iteration b, only one model M is considered, so the estimate of θ is

$$
\hat{\bar{\theta}}=\frac{1}{B} \sum_{h=1}^{B} n_{M_{k}} \hat{\theta}_{M_{k}}=\sum_{k=1}^{K} \hat{P}\left(M_{k} \mid D\right) \hat{\theta}_{M_{k}}
$$

Application

- We compute posterior model Probability using BVS and also approximate using AIC and BIC for each model
- We fit the full model, the best model and contrast their estimate with model averaged estimates

Results: Posterior Model and Inclusion Probability

Model	Parameters in the model				Rank		
	ξ_{1}	ξ_{2}	ξ_{3}	ξ_{4}	B	A	B
					1	1	V
					C	c	S
1	1	0	1	0	2	3	2
2	1	1	1	0	1	1	1
3	1	0	1	1	4	4	4
4	1	1	1	1	3	2	3
Inc. Prob.		0.890		0.066			
P-value		0.015		0.645			

Results: Posterior Model and Inclusion Probability

Model	Parameters in the model										Rank			
	ξ_{1}	ξ_{2}	ξ_{3}	ξ_{4}	B	A	B							
					I	I	V							
					C	C	S							
$\mathbf{1}$	1	0	1	0	2	3	2							
$\mathbf{2}$	1	1	1	0	1	1	1							
$\mathbf{3}$	1	0	1	1	4	4	4							
$\mathbf{4}$	1	1	1	1	3	2	3							
Inc. Prob.		0.890		0.066										
P-value		0.015		0.645										

- All approaches reject the null hypothesis $H_{0}: \xi_{2}=\xi_{4}=0$
- Clearly, model 2 is indicated as the best by all approaches

Results: Posterior Model and Inclusion Probability

Model	Parameters in the model									Rank			
	ξ_{1}	ξ_{2}	ξ_{3}	ξ_{4}	B	A	B						
					1	1	V						
					C	C	S						
$\mathbf{1}$	1	0	1	0	2	3	2						
$\mathbf{2}$	1	1	1	0	1	1	1						
$\mathbf{3}$	1	0	1	1	4	4	4						
$\mathbf{4}$	1	1	1	1	3	2	3						
Inc. Prob.		0.890		0.066									
P-value		0.015		0.645									

- All approaches reject the null hypothesis $H_{0}: \xi_{2}=\xi_{4}=0$
- Clearly, model 2 is indicated as the best by all approaches
- This model says that the two groups have a different intercept but identical slope

Results: Parameter Estimates

Par	Full		BM		MA-BIC		MA-AIC		BVS
	mean	SD	mean	SD	mean	SD	mean	SD	mean
ξ_{1}	0.690	0.259	0.745	0.229	0.799	0.219	0.767	0.232	0.761
ξ_{2}	0.865	0.340	0.786	0.295	0.630	0.238	0.728	0.277	0.661
ξ_{3}	-0.245	0.051	-0.265	0.028	-0.259	0.031	-0.260	0.034	-0.262
ξ_{4}	-0.028	0.061			-0.002	0.008	-0.006	0.018	-0.001
σ_{b}	0.845	0.121	0.846	0.121	0.846	0.120	0.851	0.121	0.90

Outline

(1) Introduction

- Model averaging
(2) Model Averaging Strategies
- Frequentist model averaging
- Bayesian Variable selection

(3) Conclusion

Conclusion

- Post model selection parameter estimation is too risk and may lead to bias
- The use of model averaging is advocated in situations where,
- The underlying goal of model selection is parameter estimation or prediction
- No single model is overwhelmingly supported by the data
- The use of frequentist model averaging is limited to situations where we have small number of candidate models
- The BVS method performs simultaneous analyses of all the possible models and provides model averaged parameter estimates

Thank You

